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Abstract – Current and future NASA robotic missions to
planetary surfaces are tending toward longer duration and
are becoming more ambitious for rough terrain access. For a
higher level of autonomy in such missions, the rovers will
require behavior that must also adapt to declining rover
health and unknown environmental conditions. The MER
(Mars Exploration Rovers) called Spirit and Opportunity
have both passed 200 days of life on the Martian surface, with
possible extensions to 300 days and beyond depending on
rover health. Changes in navigational planning due to
degradation of the drive motors as they reach their lifetime
are currently done on Earth for the Spirit rover. The
upcoming 2009 MSL (Mars Science Laboratory) and 2013
AFL (Astrobiology Field Laboratory) missions are planned
to last 300-500 days, and will possibly involve traverses on
the order of multiple kilometers over challenging terrain.
This paper presents an adaptive control algorithm for
onboard learning of weights within a free flow hierarchy
(FFH) behavior framework for autonomous control of
planetary surface rovers that explicitly addresses the issues
of rover health and rough terrain access. We also present the
results of some laboratory and field studies.

Index Terms – Adaptive behavior,  o n b o a r d
learning, planetary surface rovers

I.  INTRODUCTION

High-value science data acquisition on rough terrain
(example shown in Figure 1(a)) is beyond the capabilities of
current NASA rover designs. Although the JPL technology
prototype rover SRR (Sample Return Rover) shown in
Figure 1(b) has the ability to mechanically adapt itself to
changing terrain by varying its shoulder angles [1, 2, 3, 4],
such an operation requires a high level of adaptability in the
onboard control algorithms during the mission in order to
maintain the health of the rover. In addition, as the mission
progresses, the onboard control must also adapt to degraded
performance due to wear-and-tear on components such as the
steering and drive mechanisms.

We previously developed a behavior-based framework
called BISMARC (Biologically Inspired System for Map-
based Autonomous Rover Control) to address these concerns
at the system level by treating rover motion, rover health,
and resource management within a FFH (free flow hierarchy)
[5, 6, 7]. BISMARC has demonstrated robust performance
for a number of different simulated mission scenarios
including multiple cache retrieval [8], fault tolerance for
long duration missions [9], and site preparation [10].

The major limitation in the original implementation of
BISMARC was the use of fixed weights in the FFH, which
effectively made it unable to adapt to situations outside of

the original world model. This paper presents an onboard
mechanism for learning weights within the FFH that will
adapt not only to the dynamic environment around the
rover, but also to the degradation of mechanical components
during the mission lifetime. Our goal in this research is not
to find the optimal weight adaptation policy, but instead
one that is “good enough” to maintain rover health while
still achieving high level goals.

The next section discusses some background and related
work from ethological studies of animal behavior and
learning mechanisms. This is followed by a brief description
of the organization of the action selection mechanism of
BISMARC, followed by a discussion of the learning
mechanism of the system. We close with experimental
studies and conclusions.

II.  BACKGROUND & RELATED WORK

Ethologists analyze animal behavior and develop
models and explanations based upon external observations.
The conceptual models and ideas that have emerged from the
past half-century of ethology are quite useful as foundations
for realizing intelligent behavior synthesis in robots [6, 11].
Several concepts that are thought to contribute to animal
intelligence and adaptability include hierarchical
organizations of behavior, concurrent activation and
coordination of motivational tendencies (e.g., multi-
behavior action selection), and individual behavior
excitation and inhibition via thresholds.

The hierarchical nature of behavior is supported by a
host of similar conceptual models of motivational control of
behavior in animals.  Examples include Tinbergen’s
hierarchy of instinct centers [12], Baerends’ hierarchical

Figure 1. Planetary surface terrain and technology
example for autonomous access to high risk,
scientifically interesting regions. (a) Mars cliff-face with
signs of water outflows; (b) JPL technology prototype
of a terrain-adaptive reconfigurable rover.
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decomposition of herring gull incubation behavior [13], and
MacLean’s triune brain concept [14] among others. These
models postulate a decomposition of behavior into high and
low levels of instinct/motivation in which higher levels
modulate lower-level activities to achieve a variety of
behavioral expressions. Brooks used this type of hierarchy
in the design of his subsumption control architecture [15].

Prior research by Tyrrell [16] and Bryson [17]
demonstrated superior performance of a hierarchical system
for action selection over purely reactive systems. In
particular, the agents in the Edmund system of Bryson [17]
are built as related sensing and action functions that exhibit
selective attention with the payoff of a higher efficiency than
the modified Rosenblatt and Payton (RP) mechanisms of
Tyrrell [16, 18]. A comprehensive overview of action
selection systems can be found in Bryson [19]. Although
BISMARC uses the modified RP mechanisms, the nodes in
the FFH perform operations that are more sophisticated than
simple combination. In some sense, they are closer to the
competence structures of Bryson [17], in that a collection of
plan elements are organized as a prioritized finite state
machine whose outputs converge on a specific goal. These
nodes have undergone extensive evaluation at the modular
level either through field or mission testing.

To date, there has been very little research into learning
for hierarchical action selection systems that are typically
characterized by multiple, possibly conflicting goals [20].
The dominant learning strategy for single goal achievement
such as robotic navigation has been reinforcement learning
(RL), an unsupervised method that seeks to maximize a
reward signal based on the utility of pairings of input and
output states and their subsequent actions [21, 22, 23]. One
of the most popular RL algorithms is Q-learning [24] and
its variations such as Q-PSP [25], and hierarchical Q-
learning [26]. RL algorithms typically suffer from slow
convergence, large state spaces, and difficulties in handling
uncertain sensory inputs.

Continuous valued versions of the Q-learning algorithm
have been developed to address the large state space problem
[27, 28, 29]. These works used a continuous Q-value
derived from neural networks or other function
approximation methods. The state space concerns were also
addressed for deterministic environments using a forgetting
mechanism in a penalty-based hierarchical Q-learning
algorithm, which reduces the amount of state information
that an agent must maintain by using a low level agent to
maintain local state information and a high level agent to
maintain global state [30, 31]. Most of the RL studies to
date have been confined to simulations and interior
navigation in 2-D environments.

Most recently, learning of sequential behaviors for goal
satisfaction through a blend of static and dynamic behavioral
motivation modules has been demonstrated in simulation
and on a commercially available AmigoBot in a lab setting
[32, 33]. This analysis used state prediction following an
action to learn the sequential behaviours. However, in the
case of planetary surface rover operations, the relationship
between an action and a subsequent state is difficult to
derive since it is closer to a non-deterministic process due to

interactions with the terrain. However, of particular
importance in the behavioral sequence study [32, 33] was
the use of short-term memory (STM) and long-term memory
(LTM) to store successful behavioral sequences during
learning. Memory encoding is an effective technique for
limiting the time needed for on-line learning, and is used in
the BISMARC learning algorithm.

An alternate learning system to Q-learning and its
variants that performs in the presence of a multiple
conflicting goals where subtasks are only partially satisfied
is W-learning [34]. W-learning is based on compromise or
negotiated decision making between agents , and is a
memory efficient method that adapts weighted activation
levels for action selection [34]. As such, it is more suited
for operation onboard planetary surface rovers than
traditional or hierarchical Q-learning systems, and a
temporally prioritized modification of it is running under
BISMARC.

In ethological terms, activation levels or weights can be
thought of as conveyors of motivational tendencies for
individual behaviors.  They serve as a form of motivational
adaptation since they cause a control policy to dynamically
change in response to goals, sensory inputs, and internal
state.  Such behavioral flexibility permits adaptation to new
environments and degradations in performance over time.
We exploit this flexibility in an onboard mechanism for
learning weights [7] that will adapt not only to the dynamic
environment around a rover, but also to degradations of
mechanical component performance (e.g., rover wheel
motors) during long duration missions. The next section
reviews BISMARC and introduces the FFH for the rough
terrain access mission scenario.

III.  BISMARC ORGANIZATION

An example of the action selection mechanism used in
BISMARC is shown in Figure 2 for a rough terrain
navigation mission that is used for the experimental studies
reported in this paper. The rectangular boxes represent
behaviors and the ovals are sensory inputs (either fixed,
direct, or derived). At the top are the high level behaviours:
Don’t Tip Over, Go to Goal, Avoid Obstacles, Preserve
Motors, Warm Up, Get Power, and Sleep at Night. These
goals are related to both task and rover safety. For example,
since most planetary surface rovers have only visual sensors
for navigation, the sensory input for Proximity to Night is
derived from knowledge of the sun’s position and forces the
rover to sleep at night by weighting the input to Sleep at
Night heavier (4.0) than any other behavior in the hierarchy.
The Avoid Obstacles behavior uses the output of an onboard
local navigation algorithm as recommendations for viable
paths. The rovers are equipped with solar panels and the
Rest behavior allows the batteries to recharge if the sun is
up. The Rest behavior is also used to cool down the motors
for Preserve Motors if they are working too hard going up a
steep slope, or to stop and turn on the heaters for Warm Up
if the internal temperature of the rover drops below a safety
threshold.



The intermediate level Change CG behavior is an
example of a sophisticated combination behavior mentioned
in Section 1 that works to shift the center of gravity of the
rover (see Figure 1(b)) much like an animal does while
climbing on a steep slope. This behavior is implemented
using a finite state machine based on a well-tested algorithm
for pose reconfiguration [1, 2, 3, 4] The algorithm uses the
onboard gyroscopes and accelerometers, which would be
equivalent to the inner ear mechanism in mammals for roll
and pitch determination. Recommendations for shoulder
angle and arm end position changes to help stabilize the
rover are generated and passed on to the bottom level
behaviors.

The intermediate level behaviors are designed to interact
with both the STM, which corresponds to perceived sensory
stimuli, and the LTM, which encodes remembered sensory
information. Control loops are prevented through temporal
penalties (shown as T-ovals in Figure 2) that constrain the
system to only repeat a behavior a predetermined number of
times. The bottom level behaviors in the hierarchy fuse the
sensory inputs and the weighted activations of the higher
level behaviors in order to select appropriate actions for
rover safety and goal achievement. The rover will continue
to move until it achieves the goal position as determined by
a rover localization algorithm [35] shown as the Goal
Present input to Stop in Figure 2, or its health deteriorates
due to dead batteries, freezing, burned out motors, or
tipping over.

BISMARC’s map-based LTM (Long Term Memory) is
similar to hippocampus place cells. Landmarks
corresponding to obstacles and goals are extensively mapped
and stored for comparison to perceived inputs, with a
probabilistic update of memories based on the positional
variance of the rover and the match strength of the current
perception to memory contents. A LTM landmark is
encoded as a four-byte field that includes relative height of
the landmark (2 bytes), actions leading to the landmark (1
byte), and accelerometer readings on the robot (1 byte). A
similar approach is the coupled goal/representation

framework of [36, 37]. Another alternate approach is an
occupancy grid that gives dense coverage of the
environment, but doesn’t scale well for long duration
planetary surface missions [38].

IV.  LEARNING MECHANISM

Learning mechanisms for planetary surface rovers have
the same requirements as terrestrial robots [39]: (1) noise
immunity, (2) fast convergence, (3) incrementality
(improving performance while learning), (4) tractability
(iterations of algorithm doable in real-time), and (5)
groundedness (information limited to onboard sensors). In
particular, the fast convergence and tractability requirements
are key for planetary surface rovers because they are typically
computationally challenged (i.e., MER uses a 27Mhz CPU)
due to power constraints. We address (2) and (4) through a
behavior decomposition process similar to the use of
heterogeneous reward functions developed by [40]. We give
the details of the reward function for updating the weights
for the Move behavior (see Figure 2) in this section. For
point (3) we use the W-learning algorithm of Humphrys [34]
supplemented with a dynamic reward function directly
related to rover health. For (1) we use a sequence memory
similar to that of McCallum [41, 42] and Michaud and
Mataric [43] Finally, we restrict our inputs to onboard
sensors only, as stipulated in point (5).

The weights on the links between modules are usually
heuristically set based on mission goals. These goals are
specified at a relatively high level without complete
knowledge of the operating environment of the rover. There
is however a priority derived from mission risk mitigation
requirements explicitly included in the relative size of the
weights. The maximum activation of the high level
behaviors are weighted to give the highest priorities to rover
preservation. In order of highest priority to lowest these are
Sleep at Night, Avoid Obstacles, Preserve Motors, Don’t
Tip Over, Get Power, and Warm Up . In addition, rover
health will degrade as the mission progresses, and weights

Figure 2: Free-flow hierarchy action selection mechanism for rough terrain navigation mission scenario.  Ovals
represent inputs derived from sensory stimuli, rectangular boxes are behaviors, and double ovals are temporal
penalties.  All weights on inputs to behaviors are 1.0 unless otherwise noted. Segmented boxes and ovals
represent directional inputs (only cardinal directions shown but in practice continuous coverage). See text for
further details.
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chosen at full health may no longer be appropriate. Rover
health is defined in Equation (1) as:

where power is the current battery levels, motor_current is
the current draw on the motors, AGE_MAX is the maximum
expected lifetime for the rover, age is the current age of the
rover, and wp and wmc are weights (currently both set to 0.5
since dead batteries are as lethal as burned-out drive motors).
A dynamic reward function is defined in Equation (2) goal
achievement for each step:

where ∆ is the change, and wrh and wga are weights (currently
set to 0.65 and 0.35 based on the relative importance of
health and goal achievement determined experimentally).

Learning is only enabled in the weights on the links
feeding into the Move behavior at the lowest level in the
FFH shown in Figure 2. This is done in order to maintain
the rover safety embodied in the relatively high priorities of
the Sleep at Night, Get Power, and Warm Up high level
behaviors. A modified version of the W-learning algorithm
of Humphrys [34] is used in BISMARC to dynamically
update the weights. In W-learning, agents suggest their
actions with a weight W and the maximum weight is chosen
as the leader. In our case there are three behaviors vying for
control of Move: Go to Goal, Avoid Obstacles, and Preserve
Motors. W-learning uses the difference between the predicted
reward P  and the actual reward A  to determine which
weights are to be updated [34].

Humphrys used a genetic algorithm run off-line to
determine his reward functions. We instead use the
expression in Equation (2) in order to capture the true
change in the rover health through an action (the motor
currents and battery levels are read in real-time). Rover
behavior is extensively studied prior to launch through both
laboratory and field trial studies, so the predicted changes in
rover battery levels and motor currents are known for rover
movement and are actually used for resource management
planning during the current MER missions.

A small sampling of the predicted rewards is shown in
Figure 3 for typical rover behavior. The reward (1) for
movement towards the goal on even terrain from a start
position is the highest since rover health has a minimal
change compared to progress towards the goal. As
progressively steeper slopes are attempted, the rewards (2-3)
start out being positive since progress towards the goal is
still outweighing the impact on rover health, but become
more and more negative (4-5) as the steepness increases.
Backing-off the slope has a negative reward (6-7) for the
relatively benign slopes since the rover health improvement
in rover health is outweighed by the lack of progress
towards the goal, becoming positive (8-9) for the steeper
slopes. The reward (10) for driving sideways is slightly
negative since movement away from the goal outweighs the

minimal impact on rover health. The last reward (11),
driving away from the goal, is a large negative value
primarily due to the movement in a direction totally
opposite the goal.

The Move/Tilt Arm/Change Shoulder Angles, Rest,
Stop, and Sleep actions at the lowest level in the FFH
shown in Figure 2 are mutually exclusive and the action
with the maximum activation is chosen using a competitive
action selection. The Tilt Arm, Change Shoulder Angles,
and Move actions at the lowest level in the FFH shown in
Figure 2 can be done simultaneously, so they are treated as a
unit during the action selection process. However, progress
towards the goal will be compromised if the rover tips over,
so there is a dynamic relationship between the two high
level goals of Go to Goal and Don’t Tip Over. The W-
learning algorithm is applied to the links feeding into the
Move behavior in the hierarchy with a time delay between
activations. The Don’t Tip Over behavior activation occurs
in the first time slice, followed by the Go to Goal weight
updates and activation. This maintains the rover health,
while at the same time making progress towards the goal.
Another instance where this time delay process is applied is
in the relative direction that the rover moves. In order to
Preserve the Motors, the rover will attempt to climb a steep
incline, and either back off, go sideways, or rest if the
perceived motor currents in the rear wheels are too high. If
the weights are not dynamically adjusted, this could lead to
dithering where the rover attempts to climb, backs off, and
then attempts to climb in the same direction. Adaptive
weighting using the W-learning algorithm changes the

rover_health = wp power + wmc (1 - motor_current)  (AGE_MAX - age)
AGE_MAX

wp + wmc = 1
(1)

reward = wrhΔrover_health + wgaΔgoal_achievement
wrh + wga = 1

(2)
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Figure 3: Sample of rewards derived using Equation
(2) for a number of different types of actions (in
reality the action space is continuous). Reference
point is rover health of 1.0 except in cases where the
rover is reacting to a current situation (i.e., backing
off climbing a slope). All moves are with respect to
the goal actions are: (1) normal driving on even
terrain, (2) driving up a 5° slope, (3) driving up a
10° slope, (4) driving up a 25° slope, (5) driving up
a 45° slope, (6) backing-off a 5° slope drive, (7)
backing-off a 10° slope drive, (8) backing-off a 25°
slope drive, (9) backing-off a 45° slope drive, (10)
driving sideways, and (11) driving backwards. The
weights were both set to 0.5 in Equation (1) and to
0.65 and 0.35 respectively for the change in rover
health and change in relation to goal in Equation
(2).



direction of attack, since dithering compromises progress
towards the goal. For this situation, there is a time delay
between application of W-learning to the two incoming
links of Go to Goal and Preserve Motors, with Preserve
Motors occurring first, followed by Go to Goal.

Although our convergence times are typically within
500ms, it is still desirable to limit CPU cycles devoted to
learning if it may not be needed. Noise in the sensors can
lead to state aliasing where the same sequence of state
transitions experienced previously is not recognized. One
possible solution to this problem is to provide a memory to
the system [41, 42, 43, 44]. We maintain a fixed number of
memory traces (currently 100) of limited length (currently
25 steps) of the most recent experiences of the rover. As new
experiences come in they are checked for similarity to
previous sequences and merged. In the event that the
behavior sequence is new, the oldest traces are deleted.
These traces are organized using the tree structure developed
by Michaud and Mataric [43, 44]. Rather than use these
traces to trigger alternate behaviors as done by Michaud and
Mataric, we instead use them to seed the W-learning process
with the sequence of expected rewards. We have seen a
speedup of a factor of two in our step-wise learning.

V.  EXPERIMENTAL STUDIES

In order to determine the utility of BISMARC for
planetary surface operations in rough terrain, we have run
three different types of experimental studies: (1) 2000
simulated rough terrain navigation missions, (2) 50
laboratory sequences with SRR, and (3) 4 sequences with
SRR in natural terrain in the Arroyo Seco outside JPL. We
have attempted to match the fidelity of the simulation
models for terrain and rovers to those used for the laboratory
and field studies.

A. Simulation
The first series of experimental studies used simulated

terrain based on MOLA (Mars Orbiter Laser Altimeter) data
from the Dao Valis region of Mars, which had slopes of up
to 65°. A view of the SRR during one of the simulation
runs is shown in Figure 4. Mission success was defined as
the attainment of the randomly selected goal position
without dying due to freezing, dead batteries, burned out
motors, or tipping over. The experimental setup included:

• Random starting and goal positions
• Timestep of 0.1s
• 10% loss of traction in rocky terrain
• 1 sq. km study area (5 cm resolution)
• Top speed of 30 cm/sec

The model of SRR matches the physical platform and has
two sets of stereo cameras, one body-mounted and one mast
mounted, a 3 DOF (degrees of freedom) manipulator and a
twelve week battery lifetime supplemented with solar
panels.

Our studies had a 95.9% mission success with the
onboard adaptive learning mechanism, and a 43% success
rate without the adaptive learning. The primary failure mode
(3.8%) for the system with learning enabled was dead
batteries, which from a mission standpoint would indicate a
need for larger solar panels. An analysis of the 57% of the
missions that failed with no learning enabled gives:

• Tipping over - 27%
• Dead batteries - 15%
• Burned out motors - 9%
• Freezing - 6%

Since 27% of the missions failed due to tipping over, the
initial weights for inputs to Move were set too high, giving
an overall bias to the Get to Goal behavior over rover safety
related behaviors such as Don’t Tip Over.

B. Laboratory
The second set of experimental studies was run in the

Planetary Robotics Lab (PRL) at JPL and used the JPL
technology prototype rover SRR shown in Figure 5. SRR
has independently articulated shoulders, which allow it to
dynamically change its pose and lean much like an animal
does on sloped terrain. The full range of shoulder movement
is shown in Figure 5. SRR also has independent four-wheel
drive and independent four wheel steering enabling it to
travel sideways.

One of the experimental runs is shown in Figure 6,
where we have set up a worse case scenario of opposing hills
and valleys for the rover. The SRR (Sample Return Rover)
successfully negotiated the course based on a subnet of the

Figure 4. The SRR climbing a 35° slope in
simulated terrain derived from MOLA data in the
Dao Valis region of Mars. The model of the rover
contained full kinematics and dynamics and used a
probabilistic slip assumption. The FFH shown in
Figure 2 was used for control and adaptive learning
for 2000 simulation runs.

Figure 5. Sample Return Rover (SRR) range of
hardware adaptation including clockwise from upper
left - the lowest range of the shoulder articulation,
the highest range of shoulder articulation, and the
mid-range of shoulder articulation coupled with
extended arm movement.



full hierarchy shown in Figure 2. This subnet included the
Don’t Tip Over, Go to Goal, Avoid Obstacles, and Preserve
Motors top level nodes. The Warm Up, Get Power, and
Sleep at Night top level node activation levels were all set
to zero since the interior of the lab was warm and not
exposed to the sun.

Another series of laboratory trials used a ramp set at a
65° slope with the rover positioned at the bottom. The goal
position was on the other side of the ramp, which was
beyond SRR’s stability capabilities to climb even with
shoulder reconfiguration. Initially the rover attempted to
climb the slope, but repeatedly backed off and then tried
again. This behavior can be traced to the combination of Go
to Goal, Avoid Obstacles, and Preserve Motors using the
default weights. The learning algorithm progressively
reduced the Go to Goal weight from 1.5 to 0.45 while at the
same time increasing the weights of Go to Goal and Avoid
Obstacles from 1.0 to a high-water mark of 1.6, which
caused the rover to try to skirt the ramp by moving
sideways while still maintaining movement towards the
goal. Although adaptation of the Avoid Obstacles weights
lagged behind those of the Preserve Motors, the ramp was
eventually seen as an obstacle and the obstacle avoidance
behavior kicked in. As the rover cleared the side of the ramp
it then started movement towards the goal due to the Go to
Goal behavior output dominating the inputs to Move
without any obstacles or sloped terrain in front of the rover.

The dynamic weight adaptation seen in the ramp trials
is shown in Figure 7, where the weights are shown for the
Go to Goal, Avoid Obstacles, and Preserve Motors
behaviors. There are rapid changes in the weights as the
rover attempts to climb the ramp, followed by oscillations
about a fixed point after numerous backing-off behaviors and
then skirting the edge of the ramp. The variability in the
weights over the trials is greatest when they are stabilizing
to their new values (as seen in the size of the error bars). The

eventual outcome of the sequence was that the rover learned
to treat steeply sloped terrain as an obstacle, while at the
same time trying to prevent motor burn-out. In the field,
this behavior would be equivalent to the rover trying to find
a safe way up a slope to get to the goal, as will be shown in
the next sub-section.

C. Field
The last series of experimental studies was done in the

Arroyo Seco, a dry wash that is next to JPL. This site is
used for technology prototype rover testing and is
characterized by a mixture of benign sand and rocky beds
that have been scoured by the periodic water flow bounded
by steeply sloped cliffs. The learning component of
BISMARC was not fully implemented at the time, so only
qualitative results are available at this time.

We were only able to complete a preliminary series of 4
runs in the Arroyo Seco and will return for more data
collection in the end of September of 2004 prior to the
winter rains. An example of the skirting behavior along a
slope, as previously seen in the laboratory studies discussed
in the previous sub-section, is shown in Figure 8, where the
rover approaches the slope in the left frame and is not able
to climb, skirts to the side in the middle frame, and finally
gets enough traction to climb to the top of the rise and
continue on towards the goal.

VI.  CONCLUSIONS

We have provided a learning component to an
autonomous rover control system for planetary rovers
traversing rough and highly sloped terrain during long
duration missions. The FFH action selection mechanism of
BISMARC [5, 6] is coupled with adaptive onboard learning
of weights in the hierarchy. The learning mechanism enabled
BISMARC to maintain rover health in both simulated and
actual rover studies in rough terrain. Of particular
importance for future NASA rover missions was the analysis
of the rover failures, indicating that an additional 52.9% of
missions would potentially be successful with adaptive

Figure 6. Clockwise from upper left: SRR performing
continuous pose reconfiguration using its adjustable
shoulders during a traverse in the Planetary Robotics
Lab at JPL. The terrain was a set of two opposing
hills and valleys, with 45º degree slopes.
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onboard learning. We are currently optimizing the memory
trace implementation and preparing for further trials in the
Arroyo Seco (results should be collected in time for the
meeting). We are also starting the integration of the
BISMARC control techniques into the recently developed
CAMPOUT (Control Architecture for Multi-robot Planetary
Outposts) running on two technology prototype rovers at
JPL [3, 45].
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